Stable Single α-Helices Are Constant Force Springs in Proteins*

نویسندگان

  • Marcin Wolny
  • Matthew Batchelor
  • Peter J. Knight
  • Emanuele Paci
  • Lorna Dougan
  • Michelle Peckham
چکیده

Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution and evolution of stable single α-helices (SAH domains) in myosin motor proteins

Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in leng...

متن کامل

Mechanical transition from α-helical coiled coils to β-sheets in fibrin(ogen).

We characterized the α-to-β transition in α-helical coiled-coil connectors of the human fibrin(ogen) molecule using biomolecular simulations of their forced elongation and theoretical modeling. The force (F)-extension (X) profiles show three distinct regimes: (1) the elastic regime, in which the coiled coils act as entropic springs (F < 100-125 pN; X < 7-8 nm); (2) the constant-force plastic re...

متن کامل

Distribution and evolution of stable single #_#x03B1;-helices (SAH domains) in myosin motor proteins

Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in leng...

متن کامل

Waggawagga-CLI: A command-line tool for predicting stable single α-helices (SAH-domains), and the SAH-domain distribution across eukaryotes

Stable single-alpha helices (SAH-domains) function as rigid connectors and constant force springs between structural domains, and can provide contact surfaces for protein-protein and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are monomeric and stable in polar solutions, characteristics which distinguish them from coiled-coil domains and intrinsically disorde...

متن کامل

Probing the energy landscape of the membrane protein bacteriorhodopsin.

The folding and stability of transmembrane proteins is a fundamental and unsolved biological problem. Here, single bacteriorhodopsin molecules were mechanically unfolded from native purple membranes using atomic force microscopy and force spectroscopy. The energy landscape of individual transmembrane alpha helices and polypeptide loops was mapped by monitoring the pulling speed dependence of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 289  شماره 

صفحات  -

تاریخ انتشار 2014